8,866 research outputs found

    Advanced Architectures for Astrophysical Supercomputing

    Full text link
    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100Ă—)O(100\times) in general-purpose computation -- performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8 2009, Sapporo, Japan (ASP Conf. Series

    GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

    Full text link
    Traditional analysis techniques may not be sufficient for astronomers to make the best use of the data sets that current and future instruments, such as the Square Kilometre Array and its Pathfinders, will produce. By utilizing the incredible pattern-recognition ability of the human mind, scientific visualization provides an excellent opportunity for astronomers to gain valuable new insight and understanding of their data, particularly when used interactively in 3D. The goal of our work is to establish the feasibility of a real-time 3D monitoring system for data going into the Australian SKA Pathfinder archive. Based on CUDA, an increasingly popular development tool, our work utilizes the massively parallel architecture of modern graphics processing units (GPUs) to provide astronomers with an interactive 3D volume rendering for multi-spectral data sets. Unlike other approaches, we are targeting real time interactive visualization of datasets larger than GPU memory while giving special attention to data with low signal to noise ratio - two critical aspects for astronomy that are missing from most existing scientific visualization software packages. Our framework enables the astronomer to interact with the geometrical representation of the data, and to control the volume rendering process to generate a better representation of their datasets.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8 2009, Sapporo, Japan (ASP Conf. Series

    Spotting Radio Transients with the help of GPUs

    Full text link
    Exploration of the time-domain radio sky has huge potential for advancing our knowledge of the dynamic universe. Past surveys have discovered large numbers of pulsars, rotating radio transients and other transient radio phenomena; however, they have typically relied upon off-line processing to cope with the high data and processing rate. This paradigm rules out the possibility of obtaining high-resolution base-band dumps of significant events or of performing immediate follow-up observations, limiting analysis power to what can be gleaned from detection data alone. To overcome this limitation, real-time processing and detection of transient radio events is required. By exploiting the significant computing power of modern graphics processing units (GPUs), we are developing a transient-detection pipeline that runs in real-time on data from the Parkes radio telescope. In this paper we discuss the algorithms used in our pipeline, the details of their implementation on the GPU and the challenges posed by the presence of radio frequency interference.Comment: 4 Pages. To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Serie

    Realtime monitoring for the next generation of radiotelescopes

    Full text link
    The forthcoming generation of radiotelescopes pose new and substantial challenges in terms of system monitoring. Information regarding environmental conditions, signal connectivity and level, processor utilisation, memory use, network traffic and even power consumption needs to be collected, displayed in realtime, and preserved in a permanent database. In this paper, we put forward the Ganglia monitoring system as a scalable, robust and efficient architecture that appears well-suited to the data collection aspect of radiotelescope monitoring, and we discuss approaches to the visual display of the streaming metric data produced by Ganglia. In particular, we present initial work in the use of 3-dimensional (3-d) multiplayer game technology for instantaneous status monitoring and enquiry, and we describe the extensions to this work required for radiotelescope monitoring.Comment: Submitted to Workshop on Applications of Radio Science (WARS 2008), accepte

    Prospects for Redshifted 21-cm observations of quasar HII regions

    Full text link
    The introduction of low-frequency radio arrays over the coming decade is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21cm emission between a large HII region and the surrounding neutral IGM will be the simplest and most easily interpreted signature. We find that an instrument like the planned Mileura Widefield Array Low-Frequency Demonstrator (LFD) will be able to obtain good signal to noise on HII regions around the most luminous quasars, and determine some gross geometric properties, e.g. whether the HII region is spherical or conical. A hypothetical follow-up instrument with 10 times the collecting area of the LFD (MWA-5000) will be capable of mapping the detailed geometry of HII regions, while SKA will be capable of detecting very narrow spectral features as well as the sharpness of the HII region boundary. The MWA-5000 will discover serendipitous HII regions in widefield observations. We estimate the number of HII regions which are expected to be generated by quasars. Assuming a late reionization at z~6 we find that there should be several tens of quasar HII regions larger than 4Mpc at z~6-8 per field of view. Identification of HII regions in forthcoming 21cm surveys can guide a search for bright galaxies in the middle of these regions. Most of the discovered galaxies would be the massive hosts of dormant quasars that left behind fossil HII cavities that persisted long after the quasar emission ended, owing to the long recombination time of intergalactic hydrogen. A snap-shot survey of candidate HII regions selected in redshifted 21cm image cubes may prove to be the most efficient method for finding very high redshift quasars and galaxies.Comment: 14 pages, 8 figures. Submitted to Ap

    An HI census of Loose Groups of Galaxies

    Full text link
    We present results from our Parkes Multibeam HI survey of 3 loose groups of galaxies that are analogous to the Local Group. This is a survey of groups containing only spiral galaxies with mean separations of a few hundred kpc, and total areas of approximately 1 sq. Mpc; groups similar to our own Local Group. We present a census of the HI-rich objects in these groups down to an M(HI), 1-sigma sensitivity ~7x10^5 M(sun), as well as the detailed properties of these detections from follow-up Compact Array observations. We found 7 new HI-rich members in the 3 groups, all of which have stellar counterparts and are, therefore, typical dwarf galaxies. The ratio of low-mass to high-mass gas-rich galaxies in these groups is less than in the Local Group meaning that the ``missing satellite'' problem is not unique. No high-velocity cloud analogs were found in any of the groups. If HVCs in these groups are the same as in the Local Group, this implies that HVCs must be located within ~300-400 kpc of the Milky Way.Comment: 6 pages, to appear in the ASP proceedings of IAU Symposium 217, "Recycling intergalactic and interstellar matter", eds. Pierre-Alain Duc, Jonathan Braine, Elias Brink
    • …
    corecore